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Microstructural shear localization in plastic deformation of amorphous solids
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The shear-transformation-zo8T2) theory of plastic deformation predicts that sufficiently soft, noncrys-
talline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A limited
nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening in both
constant-stress and constant-strain-rate experiments. The analysis presented here pertains only to one-
dimensional banding patterns in two-dimensional systems, and only to very low temperatures. It uses the
rudimentary form of the STZ theory in which there is only a single kind of zone rather than a distribution of
them with a range of transformation rates. Nevertheless, the results are in qualitative agreement with essential
features of the available experimental data. The nonlinear theory also implies that harder materials, which do
not undergo a microstructural instability, may form isolated shear bands in weak regions or, perhaps, at points
of concentrated stress.
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I. INTRODUCTION the context of the STZ theory.
In its original mean-field version, the STZ theory predicts

In a recent publicatiofl], Falk and | proposed a “shear- the time dependence of the plastic shear st&lfit) in ex-
transformation-zone'(ST2) theory of plastic deformation in  periments(creep testswhere a uniform(deviatorig stresss
amorphous solids. This theory was based on direct observés applied quickly and then held at a constant value. For
tions of microscale rearrangements in molecular dynamicstresses less than an ultimate yield strgssthe strain ap-
simulations. The central feature of the theory was the recogproaches a Va|ue?i'nal(s):8pl(tﬁoo) and remains constant
nition that the STZ's—Ilocalized regions where irreverSiblethere; that iS, the two-state Systems become “jammed_” The
molecular rearrangements occur—are two-state SyStemaUantitys?i'nal(s) diverges as approaches, from below, as

they can switch back and forth between only two orientay,eq the characteristic time for approach to the final state. A
thns. T_hus, the den5|ty_ of zones and the average of the_| raph ofs as a function ofeP!  therefore looks like an
orientations are appropriate order parameters for characteriz- final

ing the internal states of such systems. The equations of mé)_rdmary stress-strain curve with plastic yielding, although

tion for these order parameters, including terms that describ@e STZ interpretation of it as the infinite-time limit is not

annihilation and creation of STZ’s during deformation, pro-Strictly conventional. For applied stresses absygthe sys-
duce a relatively simple theory of plasticity that exhibits tem comes to steady state at a nonzero strainefitg (),
strain hardening, a dynamic transition between viscoelasticwhich increases with increasisg>s, . In this case, the char-
ity and viscoplasticity at a yield stress, and hysteretic effectsacteristic time for approach to steady state diverges &s

As presented ifil], the STZ theory is strictly a mean-field proachess, from above.
theory; it allows no spatial correlations in the stress or strain | have(so fa) found only two examples of constant-stress
fields or in the new order parameter. This assumption okxperiments of this kind reported in the literature, an early
spatial homogeneity, however, is inconsistent with the origi-one by Ender in 19685] and another more recent investiga-
nal picture when examined in closer detail. A localized sheation by Hasan and Boyce in 1996], both using the polymer
transformation produces a quadrupolar elastic displaceme®MMA. The work of Hasan and Boyd&iB) is rich in detall
field in its neighborhood, and a corresponding change in thand is supplemented by a theoretical analysis of their data.
local stress pattern. It is easy to see that this change in stredé small applied shear stressagp to about 80% of what |
may induce shear transformations in neighboring zonegterpret to be an ultimate yield strg¢sthe HB results seem
along the directions of maximum sheé®ee Sec. Il and IV  to be consistent with the mean-field STZ prediction, i.e., the
for details) If each localized shear transformation inducesstrain rate decreases monotonically to zero. At higher
others along certain preferred directions, then the system assresses, however, the curves of strain versus time have in-
whole may be unstable against formation of a pattern oflection points where the strain rate goes through a minimum
shear bands. This argument is the basis of numerical simwand then increases, indicating the onset of some new mode of
lations described in an important series of papers by Bulatoviscoplastic deformation. Significantly, the transition from
and Argon[2—4]. The latter authors used a model of local- viscoelastic to viscoplastic response occurs within a very
ized shear transformations that is more phenomenologicalarrow range of applied stresses; that is, the strain rate is
than the STZ theory and that does not contain some of ithighly sensitive to the stress within this range. | propose that
central features, for example, the transition between visthis new mode of deformation may emerge from a micro-
coelasticity and viscoplasticity or the hysteretic effects. Onestructural shear-banding instability.
purpose of the present investigation has been to explore the The most common measurements of plastic deformation
Bulatov-Argon picture of microstructural shear banding inare performed under conditions of controlled strain, specifi-
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cally, at constant-strain rates. For soft materials such as polyions, especially the importance of the one-dimensional ap-
meric glasses or soils, stress-strain curves generated in thigoximation made in Sec. V, will require numerics and labo-
way often exhibit strain softening. That is, the stress initiallyratory experiments that are beyond the scope of the present
rises with increasing strain but then goes through a maxiinvestigation.

mum and decreases, so that the stress ultimately required to

sustain the fixed strain rate remains lower than the peak [l. ELEMENTS OF THE STZ THEORY

stress. Hasan and Boypg| show clear examples of this kind As in [1], the discussion presented here pertains only to

of beh_awor; similar data for soils can be found in the _b_O(_)ktwo-dimensional noncrystalline systems at effectively zero
by Ishihara[7]. The converse of the strong stress sensitivityyeoeratures, i.e., at temperatures far below the glass transi-
seen in the constant-stress experiments is the fact that t

. . ) hiGn. Also, following[1], it is useful to start with the special
peak stresses in the constant-strain-rate experiments are onlyq of 4 single preferred orientation for the zones and the

vyeakl;; dtep'endefr;t on thel strain rste. Ijug?es(tjthattrt]hls V€pplied stress, and to denote the number density of zones
sion of strain softening also can be understood as the resylficnaq in the “+ "/ —* directions by the symboln. .

of an instability that sets in near the peak stress and producg$ixe [1], however, the convention here is one in which the
a pattern of microstructural shear bands that account for thgxternally’ applied d’eviatoric stress is diagonal in tiyeco-

deformation rate in the subsequent steady state. : I

. ) . ordinates, specificallys,,= —s,,=sy, ands,,=0. Choose
mportant background for th present mvestgation. Like thé®, " 20nes 10 be orentedelongated along they axis,
STpZ theor the?HB theory is bpased ona ict%re of.localize nd the "= zones along thex axis. With this convention,

Y, . ory P! e can—temporarily—suppress tensor notation.

shear-transformation sites whose populations and states 0 As in [1] Eq. (3.10, the plastic strain rate is
deformation are the internal state variables that characterize g (.29, P
the system. Unlike STZ, however,_HB do not try to m_odel ePl=h2(As)W, 2.1)
the molecular rearrangements taking place at their sites or

the interactions between these sites; thus they do not attem@here h? (previously denoted/,) is the typical area of an

to discover a connection between strain softening and shegtz (Ae) is the increment of local shear strain that occurs

localization. Nevertheless, there are deep relations betweghen one of these zones undergoes a transitiarumber of
these theories. Both are attempts to identify the physicallyger unity, and

relevant internal variables whose equations of motion must

ultimately be the basis of any satisfactory, history-dependent W=R,n,—R_n_. (2.2
theory of plasticity—as opposed to, say, purely phenomeno-

logical theories based on yield surfad® or Masing rules Here,R, andR_ are the rates for +” — “ —"and * ="

[9]. (Unfortunately, HB use the strain itself as a state vari-— “ +” transitions, respectively. These transition rates, at
able, which cannot be correct from a fundamental point ofvery low temperatures, are entropy activated as opposed to
view.) Moreover, both theories identify cumulative internal thermally activated:

changes during plastic deformation as the basis for dynamic .
yielding at high stress(See also, for example, work by R.(s)=R exp{— AV*(£sg)
Barenblatt[10]) =200 0 vy

The scheme of this paper is as follows. Section Il contains
a brief outline of the basic ideas of the STZ theory and serve¥hereAV* (£ s) is the excess free voluniarea needed to
to define concepts and notation for the rest of the analysis. I#llow a “=” — “5" transition to occur, andv is the
Sec. lIl, | derive an approximate, quasilinear, but fully ten-average free volume in the system. [, AV*(£s,) was
sorial generalization of the STZ equations that allows me t¢hosen to have the form
consider spatially inhomogeneous stress changes. Section IV _
contains a linear stability analysis of the spatially uniform AV*(sp)=Vg exp—so/u), 2.9
steady-state solutions of the quasilinear theory. The expected _
instabilities emerge, but with some surprises. The quasilineavhereVy is of order the average volume per molecule and
analysis provides the basis for a nonlinear integrodifferentials generally much smaller than the shear moduRsis an
equation that describes, in an effectively one-dimensionafittempt frequency that, ifiL], was found to be proportional
situation, how shear patterns may emerge in response to the square root of the total strain rate. Here, | shall assume
shear stresses. The solutions of the latter equation exhibit tibat this factor is simply a constant.
strain-softening behaviors described in the preceding para- If there is no spatial dependence of any of the variables,
graphs. They also provide a mechanism for the formation othen the equation of motion for.. is
isolated shear bands in materials that do not exhibit strain ) .
softening. The nonlinear analysis, including numerical re- n.=R-n-—R.n.+(e”'sg)[A;— Agnin= 1. (2.5
sults, is described in Sec. V. . o ) .

The results presented here are, at best, a rough caricatuf8iS €quation includes terms that describe creation and an-
of plastic deformation in shear-banding or strain-softeningihilation of STZ's at rates proportional to the rate at which
materials. Some features seem to be quite convincing, butlastic work is being done on the systea®!s,, with coef-
others remain problematic. Answers to several central quedicientsA., andA,,,, respectively.

: 2.3
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As previously, defineny,=n_n,, ni;=n_+n, . Also,

R.(Sp) =Ro[C(sp) £S(sp) ], (2.6
where
Ve S Vo - [So
C(sg) =exg — —cosh =| |cosh—sinh =] |,
vt M vt o
V3 S V3 S
S(so)=ex;{ — —Ocos}‘( > sinr{—osinr< >
vt M vt M
2.7
Then
Na=2RoS(S0) Nior— 2RoC(So) Ny — (P'Sg) Aanrs ;
(2.9
and
I:]tot:(‘;v‘plso)[zAcr_Aannntot]- (2-9)

Equation(2.9) implies that the ratio 2., /A n,=n., is the
natural equilibrium value fon,,,, the total density of STZ’s.

In principle, n,, could be a stress-dependent quantity. Amor-
phous materialgeven the Lennard-Jones solid in the mo-

lecular dynamics simulations described[ij) generally ex-
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Here,y=(1/2)A nib?(A&)n.., which | shall assume to be a
stress-independent quantity.

As pointed out in1] (see alsd11-13), Egs.(2.14 and
(2.15 have two kinds of solutions, one—the “jammed” or
“viscoelastic” solution—in which the plastic rate of defor-

mation ' vanishes in steady state, and another—the “vis-
coplastic” solution—in which it does not. In the first case,
there is a one-parameter family of solutions with=A
=7(sp) Ao where A=A, can have a continuous range of
values determined dynamically by the density of STZ's in
the initial state of the system. In the second, viscoplastic
case, we can have onlf=A,=1/(ysy) and A=Ay=1.

The jammed states are dynamically stable attractors for val-
ues ofs, less than an ultimate yield stresss, determined by

(2.19

Conversely, the viscoplastic state is stablesfpr s, . To see
these stability properties, writtA=Ay+A(t), A=A,
+A4(t), and compute the amplification rateqy(sy) for
which A;=woA;, A;=weA;. The result is that, fors,
<sy, the two eigenvalues ar@,=0 (because\, is unde-
termined, and wy=Q,, where

Qo(S0) =2C(So)[ ¥ S0T(S0) — 1]. (2.17)

For sp>s,, the A; and A, modes are decoupled, and both

ysy2(sy)=1.

hibit a second order dilation in response to a shear stresbave the eigenvalue,= — (1. Becausd), is an increasing
thus the equilibrium density of STZ's might increase as afunction ofs, that vanishes &, the stable attractor crosses
function of s2. For simplicity, however, | shall not consider from the viscoelastic to the viscoplastic branch of steady

that possibility here.
Next, transform to dimensionless variablas,=n.,A,
Niot= N A, and write

= 20y (2.10
S T se) '
where
w=7(sg)A—A; (2.11)
—1b2 A .1 =2 RyC(Sp); 2.1
e0=5P%(Ae)n.; POV (so); (212
and
Vs . [so
1(sp) =tanh —sinh = (2.13
Ug M
The equations of motion foh and A become
A== (1- yspd) (2.14
= —ys .
7(So) =0
and
A=—2 wsy(1-A) (2.15
7(So) ' '

states agy=s, .

Ill. QUASILINEAR THEORY OF INHOMOGENEOUS
STRESS PATTERNS

So far, this analysis has pertained only to systems in
which the shear stress has magnitsgeverywhere and has
only a fixed orientation. To incorporate inhomogeneous
stress tensors; with varying orientations into this analysis,
we need—at least temporarily—a fully tensorial version of
the theory. No such version of the complete STZ theory ex-
ists at present(See Appendix A of Falk’s dissertatidi 4]
for a first attempt at developing such a versjcFherefore, |
shall resort to a quasilinear approximatidri,13 in order to
derive equations of motion for the inhomogeneous stress
variations.

Start by noting that thedeviatorig stress and plastic
strain must in general be traceless, symmetric tensyrs,
andsﬁ', respectively. It follows from the form of Eq&2.10),
(2.14), and(2.19 that A, w, and 7 also must generalize to
traceless, symmetric tensors, and thatmust be a scalar.
One way to obtain such a structure is to write

Ti=\sij, A=V5l(vip); (3.9
that is, linearize the right-hand side of EQ.13 in sq and
then lets, becomes;; . To be consistent, we also must ap-
proximate the time constant(sy) by its limit at smallsy,
which | denote simply byr,:
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2dh—=0- _ . _ .
) (3.2 VIE=0r u=ad uy=dydy (3.6
.
° and choose
These estimates for and 75, however, should not be taken

literally; they represent only one of possibly many ways in y?=x?  cos2)

which we might start from atomistic considerations to derive P(x.y)~ (x°+y?)? Y 3.7
a theory with the general phenomenological structure shown
below. so thatu,~x 2 along thex axis andu,~ —y~* along they
With the approximations3.1) and(3.2), we now have:  axis. Then the deviatoric stress and strain fields have the
form
é-"-'zﬂw-- W;i=NSiA—Aj. (3.3
1 To 1 1] 1) 1] ~ _ 5 5 X4_6X2y2+y4 cos 40
Sxx— Syy~ Ix P — dy P~ — oZryhs T T
Also, (using summation conventign 3.9
Aij :Ti Wi — %V(Wklskl)Aij (3.4  Wherer and ¢ are the conventional polar coordinates. This
0 function has negative lobes along tkandy axes and posi-
tive lobes along the lineg=*vy, so that the shear in the
and direction of the initial deformation is largest along the diago-
nals.
A= Zi(WmSkl)V(l—A)- (3.5 Now suppose that the STZ transformation, whigh caused
To the stress patter(8.9), is rotated by an anglé relative to

_ the xy coordinate system. Then
The dissipation rate, denoted b§'s, in Sec. II, generalizes

here to (1/2}|s, . Note that, if we guess that— 1 quickly Ll B .

and stably and therefore s&t=1 in Eq.(3.3), we obtain the PO6y) r“[(y X7)€0s 20— 2xy sin 23]
guasilinear STZ equations that were usefllib] and[12]. If

we did this here, however, we would miss some of the most __ firj g

, ) ) 7 Dij(9), (3.9
important features of the shear-banding mechanism. r

The new element of the present theory is that the stress
tensors;; is to become a dynamical quantity varying with whereD is proportional to the director matrix:
both position and timex, y, andt). Before writing equations
of motion fors;;, | must specify the physical picture that | cos29 sin29
have in mind. The molecular dynamics simulations reported D(#)=cons| . oo _cosog) 310
in [1] imply that the STZ's are sparsely distributed sites at
which small clusters of atoms undergo irreversible rearrange- If, according to Eq/(3.6), ® is the potential for displace-

ments in response to ap.plied stresses. To visualize an STZnents, then, for any position far enough away from the
think of a void in an elastic material, and place a small grouporigin that it is outside the transforming zone

of atoms inside this void in such a way that their average free
volume is somewhat larger than that for most other atoms in _ rr

the system. The void has some degree of structural stability; gij(r)ZZM giej'(r): —2,U«b40i07j %5%(0). (3.11)

it can deform elastically but, because of the configuration of r

atoms on its surface, it resists collapse. Rearrangements of _

the atoms that are caged within the void couple to its shapblere,sﬁ'(r) is the elastic strain rate induced gt u is the
and, therefore, to the stress field in the elastic medium irelastic shear modulus, aris the characteristic size of an
which the void is embeddedThe stress field outside the g1z The quantitys2,(0) is the strain rate induced by the
void is similar to that in the neighborhood of an Eshelby shear transformation at distanaesf orderb, which, in turn,

inclusion. [15]) This stress field—outside the STZ's— . . . . .

provides trEe r]r)1echanism by which the STZ's are coupled Q> proportional to the rata,(0) at which the STZ population

each other is changing at the point=0. More generally, the source of
To distinguish it from the uniform applied stresg (as  the fluctuating stress fiell;(r) has a density distribution at

defined at the beginning of Sec),lidenote this fluctuating @ point, sayy’ given by

part of the stress field by the symﬁgj(x,y,t). For simplic- - . i

ity, first consider a =" — “ +" STZ transition located at Niote (1) =(Ae)ny(r')=(Ae)n.Ag(r’). (3.12
the origin of the coordinate system and aligned along the

original xy axes; and compute the stresses and strains in ititegrating over the population of STZ's with this source
not-too-close neighborhood by the potential method. That isgensity, we find an equation of motion for the deviatoric
define®(x,y) such that stress field:
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It is convenient to use a notation in which

S 0 S S _
sij:< ° >+( v )e'k'”“’t, 4.7

0 —Sp S, —9S;

Si(n=—2pu b“(As)an d2r’

a a (ne=r)r—rf)
&ri (9rj |r_r’|4

A(r")H(r=r'|=b).

with analogous notation for components ®f and

(3.13

Here,H is the Heaviside function that cuts off the integration

inside the core of the STZIt may be more realistic, but The second term on the right-hand side of E4) is the
probably not essential, to use a smoother cut@ecause . ~ . ) .
this stress field comes directly from Ed8.6) and (3.7), it ﬂugtﬁsgg? ;;rae@;tser:tssegir.nl(_allfjeeggr?égircgrisst-g&e(r terms in

i isfi 2 Thi
automatically satisfies the force balance and compatibilit .
anditiorlls Yo patibilt} At zeroth order, according to Eq&3.3), (3.4), and(3.5),
Equation(3.13 is best expressed in terms of the Fourier V& Nave

A=Ag+Aekrter, 4.2

transform ofs;;(x,y), says;;(k). Then, 1
Ao:T_O()\Svo_Ao)(l_YSOAo)a 4.3
msxx(k):gl(k)Axx(k)+g2(k)Axy(k); and
5 N L Ao=L2(NsAo—Ag)(1—Ag) (4.4
Sxy(k):g2(k)Axx(k)_g1(k)Axy(k)- 0 To 0o 0 o '

2u(Ag)b?n,,
(3.14 In this quasilinear approximation, the ultimate yield stress

. . . . s, determined by Eq(2.1®, iss,=1//y\.
Y Yy
Note that these are linear relations between the time deriva Consider first th J mmed situation for whi S'<Sy: and

tives of the fluctuating part of the stress field and the Orderexamine the linear stability of the stationary state
parameten\. ~ . v.ﬂﬂil
=\ SpAy. Ag remains a free parameter to be determined by

The kernelsj contain much of the dynamical information jnitia| conditions. (We shall compute\, explicitly in Sec.
that we need. Write the wave vectér in the form Kk, V.)

=kcosy, ky=ksing. Then The first-order equations are the following:
Gi(k, )= —cog4)g(bk);  Go(k, )= ‘S‘““‘/”@&%kig) o 7oA 1=(N AgS;+ A Soh 1 —A1)(1-ysphg); (4.5
and (1)7'0&2:)\ Aoéz_ﬁz; (46)

~ =dp (27 _ and
g(K)=6K2j —gf dhe P cSfcos 49 i X -
« P 0 w ToAlz’}/So()\ A051+)\ SOAl_Al)(l_AO)' (47)

~d 12

=127 Kzf —§J4(p)= _7T\]3(K), (3.1  From these relations, we find that
kP K

NAg -

Sy (4.8

_ MNADA(Sg) - |
wTytl

where k=bk and theJ’s are Bessel functions. Therefore, Al_m+—[)(s)51.
g(«) approachesr«?/4 ask—0 and is proportional ta 32 0 0
as k—, It rises through a maximum of about 4.176at where
=k.=3.611 and then oscillates as it decreases. In the fol-
lowing, | denote the maximum value @f(x) by Vc_l, ie., D(sg)=1—
v.=0.2395. 0

AZZ

So

)2. B (SO 2
5, Da(sg)=1—Ag S_) . (49

Yy

The combination of Eqs(3.14) and (4.8) is a pair of
linear, homogeneous equations that determines the amplifi-
cation ratew(k, ¢):

The next step is to use the results of the preceding section
to examine the linear stability of spatially uniform steady-
state solutions of our equations of motion. As we shall see in
Sec. V, the linear stability analysis of steady states misses
crucially important transient phenomena, but it does give us o -
some insight into the behavior of this system. sin(4¢/) V“g(bk)<

IV. STABILITY OF THE UNIFORM STEADY STATES IN
THE QUASILINEAR THEORY

DA(sg)Ag )A
1

§1:—cos{4¢)vw@(bk)<m

O - .
wTot1 S2; 4.10
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and aligned with the applied stress by the time that the system
has reached its uniform steady state, and thus fewer zones
S,= —sin(44) vwé(bk)<m) s are available to be transformed by the induced stsgs#lo
o 7o+ D(Sp) such suppression occurs @t=0, because there the bias in
A the orientation of the zones is not aligned with the orienta-
+cog44) vmé(bk)( 0 )gz (4.1)  tion of the emerging bands.
CRORa To complete this analysis, look at the viscoplastic states
Here with s;>s, . In steady state with nonzero plastic strain rate,
' Ag=1/(ysy) and, without ambiguity, Aqg=1. In place of
VOCZZ,U,)\(AS)bZ n,. (412) Eq5(48), we have
As we shall seey., is the dimensionless group of parameters . N(s%/s5)D(Sp) - s A -
that controls stability against microstructural shear banding. Ap=— ® 70+ D(Sy) S, A= ® To+(So/Sy)252’

To understand the nature of the stability spectrum, it is (4.16
easiest to look at two special cases. The most important situ-
ation for our purposes is the orientatigi= = /4, where the  where
bands are aligned with the direction of maximum applied

. ~ ~ 2
shear stress. In this case, theands, modes decouple, and

So

we have D(sp)= 3_>2/ -1. (4.17
1.9(bK)A oD s (Sg) —D(S)  (S; mode The analogs of Eq€4.10 and(4.11) are
w(k,ml4) 79= A(bk)A L @ de
~ V=g 0 Sz Moag. . . D(sg)(Sy/Sg)?) ~
(4.13 s,=cog4) Vmg(bk)(LlO) S
. . . " o 79+ D(Sp)
As might be expected, an instabilifpositive ) can occur
in thes; mode where the shear deformation is parallel to the . A 1 -
bands; thes, mode, where the shear is normal to the bands, Sin(4) ng(bk)( w 7o+ 1+ D(Sp) 52

always decays. Suppose, for the moment, that>1 during 41
the initial transient—a possible consequence of the dynamics (4.18

described by Eq(4.4). Then, for thes; mode in Eq.(4.13,  and

AT _ ,
wro_>(1—§§>[ng(bk)—1]. (4.14 §2=sin(4¢)yx§(bk)(D(SO)(SL/S") )51
w 79+ D(Sp)
There is an instability for all values ah<'s, but only for 1
v,.>v.=0.2395. When the latter condition is satisfied, the +cog4y) vmé(bk)(—_ S,.
instability occurs in some range of valuestd in the neigh- w 7o+ 1+D(sy)
borhood ofx,=3.611.[The numerical constants, and 4.19

are defined following Eq.3.16).] Note that the first factor on
the right-hand side of Ed4.14) vanishes asy—sy, imply-  From these we find, fop=0,
ing that the instability weakens at large stresses and disap-

pears at the yield stress. D(s A(bK)(s./s)2—1
Unexpectedly(for me), the instability is stronger in the ( f’)[yxg( )(Sy/50) ]
orientationys= 0, where thes; ands, modes again decouple, (k.0 7g= (s; mode
] 0o—

but the bands are at forty-five degrees from the direction of

1+ D(sg) [ ¥-0(bk)(s,/59)2— 1
maximum applied shear stress, i.e., in the direction in which [ (So)1L¥-9(bk)(3y/%0) ]

the applied shear stress vanishes. We have (s, mods; 20
4.2
—1,,9(bk)AgD s (So)—D(sp) (S, mod
w(K.0) 7o 7i g(bk)AgD A(sp) (so) (Al C) and, for y= /4,
Voog(bk)AO_l (32 modé -
(4.19 —D(sp)[ ».9(bK) (s, /50)?+1]
In this case, only thes, mode can be unstable. The shear (s; mode

deformation is again parallel to the bands, but there is no w(k,m/4)7o= B = ~ 2
weakening factor analogous to that in Eg.14) for this [{JFD(SO)][V“g(bk)(SY/SO) +1]
mode, and therefore it will grow more rapidly. Apparently, at (s, mode;

y=ml4, a substantial fraction of the STZ's are already (4.2))
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Now both modes are unstablet 0, and both are stable at anda=V§/vs, o= v . Symbols such a&(o) now denote
y=ml4. The instability occurs only in a finite range of functionalsC[ o(£,t)]. The yield stressr, , according to Eq.
stresses & (so/sy)?<(v../v¢); thus, it can be suppressed by (2.16), is determined by

driving the system further into the viscoplastic regime by

increasing the applied stresg. Note that the geometry of o,T(oy)=1. (5.6

this situation is similar to that of the crazing instability in

po]ymers_ The pattern of most rap|d|y growing modes is Tlghtly paCked, hard-to-deform materials such as glasses

aligned with the principal axes of the stress tensor rather tha@t |ow temperatures or the Lennard-Jones material studied in
along the direction of maximum shear. [1] have small free volumes; and therefore large values of

a. Conversely, softer materials such as polymers or clays
should have smaller values af For largea, 7(o)=1 at all
values ofo appreciably larger thaw,/a. Thus, Eq.(5.6)

We must look at nonlinear behavior in order to under-implies thato, is of order unity or, equivalentlys, is of
stand the implications of these linear instabilities. To makeordery 2. In[1], the value oﬂwas found to be of order the
progress along these lines without a great deal of new formalield stress, roughly two orders of magnitude smaller than
development, we can restrict ourselves to situations in whiclhe elastic shear modulus. This estimate, along with the pre-
the principal axes of the stress tensor retain a single, fixegeding estimate fow, then implies thatr;=1.
orientation everywhere throughout the system and at all To be consistent with previous notation, write(,t)

time_s. Within this restriction, we can exam_ine ﬁs@mode =Uo(t)+5'(§,t), whereo(t) is the applied stress andis
that is unstable fos,<s, , because the applied and induced o inquced stress fluctuation. Because only $hemode

stresses in that case remain everywhere aligned alongythe pays 3 role in this situation, we can write E§.13 in the
axes, and all spatial variations occur only along the diagona,m

orientations ¢y= * /4. While this mode is not the most
strongly unstable, it is the one that couples to the applied
stress and thus describes the deformations that would be

measured in response to the applied loads. The restriction c\)/\];here7/=2 1 y(Ae)bn.,. The quantity 2u y is approxi-

fixed stress orientation substantially limits the conclusions / .
that we can draw from this analysis. On the other hand then[-,nate'y the ratio of the shear modulus to the y|§Id stregs, and
' therefore very roughly of order 20The quantity A¢) is

. - . . IS
is no longer any reason to use the quasilinear appI’OXImatIOIll. . - - ’
Several physically important features of the following resultsOf order Bmty' As seen in the stability anaIyS|§, we 'r?(?ed
emerge from the Strong stress dependence of the full STZaIUeS ofv greater than about 0.25 to generate instabilities.

V. NONLINEAR ANALYSIS

T=7g*A, (5.7)

theory. Accordingly, bn., must be of order 10?, which is consis-
It is convenient to make the following changes of vari- tent with our basic assumption that the STZ's are widely
ables separated from each other.

In Eq. (5.7), the symbolg* denotes the integral operator

1 obtained by Fourier transformingy «):
So=~Sy=L o] Au= A=A, (5D

. dk . ) "
o I 0*0(0)- [ o [ sre O, 69
and &= (x+y)/b\2; i.e., ¢ is the spatial variable in units ™
along one or the other of the diagonal directions. For sim- . .
plicity, express time in unitﬂgl. With these transforma- Using Eq.(3.16, we find
tions and the additional spatial dependence, E2144) and

. 1 .
(2.19 become g*A(§)=ﬁld§’ g(é—&")A(E), (5.9

A=2C(0)[T (o)A —-A](1-cA) 5.2 where

and

1
9(é)=— @[3 Sin26,) +3 sin(40;) +sin(66,)];

0,=arccost. (5.10

A=20C(o)[T(c)A—AJ(1—A). (5.3

Here,
The functiong(§) is shown in Fig. 1. It is strictly local; that
o is, it vanishes fot¢|> 1 [an artifact of the sharp cutoff in Eq.
COSV{CYSW'(—”, (5.4  (3.13]. The combination of Eqg5.2), (5.3), and(5.7) is a
nonlinear system of equations that can be solved\fa,t),

_ r{ﬂ
C(o)=exp — a cos o

1

A(&,1), ando(é,t).
T(a)ztanl‘{asin%(i) }; (5.5) Before starting this nonlinear analysis, however, note that
o] the stability spectrum for the uniform state of the full STZ
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FIG. 1. Integral kerney(¢) defined in Eq(5.10. FIG. 2. Amplification ratew(x.) defined in Eq.(5.11), as a

] o ] N function of applied stress, for two different values ofA;, ac-
m0de| IS qua“ta“vely d|fferent from the quaSIllnear I’esu|t, Cording to Eq(513 The solid curve, fop\inzo_l, Corresponds to
Eq. (4.13, in the case of hard materials with large For an annealed system with few defects; the dashed curveA fpr
applied stresgy< oy, and for modes of dimensionless wave =1.0, corresponds to a system that has been quenched so rapidly
numberk oriented along one of the diagonals, the amplifi- that the initial STZ density is high.
cation rate is
tive comparisons between the results of this highly simplified

o(K)=2C(oo){[1~ oA T 00) [AoT (00) v3( k) calculation and real experimental data. Nevertheless, it is
Ca useful to use the results of Hasan and Boyd®) [6] as a
[1=00T(00)}- (511 qualitative guide. First consider their creep tests in which a

. - . uniform applied stress is turned on suddenly @&=0 and
This formula has the same structure as saeamode in Eq.  poig constant. | assume that HB were using g relatively soft
(4.13. However, the quantityg(«) is multiplied here by an  material, and therefore choose=o,=1. For these param-
extra factor7 ' (o), which becomes exponentially small for eters, the yield stress is,= 1.132. In their Fig. 4, HB show
00> 0/ a. Therefore, for larger and foro not too small,  creep-test data for a sample that underwent a sharp transition
the system is stable except for unphysically large values of from mean-field-STZ “jammed” behavior to rapid yielding
The “weakening” factors in Eq(5.11) (in square brackets over a narrow range of applied stresses, approximately 90—
also slow the instability at stresses negr. At small values 100 MPa. From this behavior, | guess that their ultimate
of 07, on the other hand, the facto€@ry) becomes small of yield stress—their analog af,—was about 100 MPa, and
order exp{ a), causing any instability that might occur there that | should look at dimensionless stresegsn some range
to grow very slowly. We therefore expect to find little or no near unity in order to make comparisons with their results.
microstructural shear-banding instability in hard materials. The sample used in this particular HB experiment was
We shall see, however, that the absence of instability doeannealed so that the initial population of transformation
not imply the absence of shear banding. zones must have been quite small. It follows that we should
Turn now to the numerical solutions of Eq%.2), (5.3, look at small values oA\, ; that is, as in HB, we expect that
and (5.7). To solve these equations, | have used a simplg¢he density of active sites is small at first and then increases
discretization of the integral kerngl(¢), and have applied as the system undergoes plastic deformation. Our stability
periodic boundary conditions, usually choosing the length ofanalysis already gives us useful information about how this
the system to be an integral number of wavelengthé:2, may happen. In Fig. 2, | have used E§.11) to compute the
of the most rapidly growing mode. In this way, the problemamplification rate for the most rapidly growing wavelength
is reduced to a large set of coupled, ordinary, nonlinear difw(x;) as a function of the stress,. For lack of a better
ferential equations. The initial conditions are always,0)  estimate, | have used= 0.4 here and throughout the rest of
=0 andA(£,0)=A;,. We shall see thad;, provides cru- this presentation, because that value produces moderate in-
cial information about the way in which the system was pre-stabilities and, as mentioned previously, is consistent with
pared, specifically, the degree to which it was annealed. Imough estimates of its constituent parameters. To compute
order to allow an instability to develop, | have chogef¥,0) Ay, | have used Egg5.2) and (5.3 to find
to be some small-amplitude, random white noise, corre-

sponding to uncorrelated inhomogeneities in the initial ori- Ao limA (D= Ain
entations of the STZ's. Specifically, O_th:c (V= 1—(1—A;)0oT (0g)° (5.13
(A(§,0A(&,0)=Mo(¢-¢), (5.12

The two functionsw(«, , o) shown in the figure correspond,
where the angular brackets denote a statistical averag®landrespectively, to a highly annealed specimen with=0.1,
is the noise strength. and to one that is very rapidly quenched so thgt=1.0.
For reasons mentioned previously, which | shall discussThe quenched specimen is strongly unstable at small stresses
further in Sec. VI, it is not sensible to try to make quantita-and stabilizes only just below, . In contrast, the annealed
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FIG. 3. Plastic strain as a function of time for a sequence of
simulated constant-stress experimeisteep tests The constitutive
parameters are=1, o,=1, and»=0.4. The initial (dimension-
lesg density of STZ's isA;,=0.1; and the sequence of applied

stressewr is as shown. The mesh size for numerical discretization . ~ . .
is A¢=0.05. Stresses,, are normalized so that the ultimate yield tial average of the fluctuating stressvanishes, the condition

stress isr, = 1.132. Strains are in units,, as defined in Eq2.12.  Of constang, becomes an equation of motion for the applied

FIG. 4. Strain ratay as a function of positio, corresponding
to the pointt=100 on the curve fory=1.0 in Fig. 3.q is in units
SoRo.

Timest are in unitsR, *, as defined in Eq(2.3. stress:

specimen is unstable only in a narrow range of stresses from ('TOZE’;,(qO_a(t)), (5.15

00=0.97 up to the yield stressr,=1.132. At the smaller 2

stresses, the density of zones never grows large enough to

trigger the instability. whereq(t) denotes the spatial average of the plastic strain
The corresponding results of the nonlinear calculation fokate q(£,t) defined in Eq(5.14).

an annealed system with;,=0.1 are shown in Fig. 3. Here,  Fijgure 5 shows stress-strain curves computed using Egs.

the plastic straimp'(t), in unitseg=b?(A&)n../2, is shown (5.2), (5.3), and(5.7), supplemented by Eq5.15. The ma-

as a function of timein unitsR; *) for a sequence of applied terial parameters are the same as in Fig. 3, in particular,
stresses corresponding roughly to the stress range shown Xy, =0.1. The strain rates arego=0.008, 0.016, 0.032,

HB Fig. 4. Specifically, the stresses shown in Fig. 3@ge  0.048, and 0.064. The peak stresses seen here are roughly
=0.4, 0.8, 0.9, 0.95, 0.975, 1.00, 1.05, 1.1, and 1.2. Againcomparable to those shown for the analogous HB experi-
7=0.4. The noise strength iM1=10"°. As expected, for ments, and are in the transition range seen in the constant-
stressesr,=<0.95, the strain rises to its uniform, steady-statestress calculations with a slight overshoot because the ap-
value at which the system remains “jammed” indefinitely. plied stress continues to rise during the onset of the
There is a rapid transition in the range 0:98,< o, , where instability. The subsequent stress drops, however, are sub-
the strain rate first slows but then increases to a new steadgtantially larger and sharper than in HB case. | have not so
state value, indicating the onset of microstructural sheafar found any way of correcting this discrepancy simply by
banding. In this range of stresses, the system enters a stalsigjusting parameters in the present theory, and therefore sus-
flowing regime in which the dimensionless shear rate,

151
q(£1)=2C()[T (o)A~ A, (5.14 970004
0.048
1 1
is localized in bands, as shown in Fig. 4 for the casge 5, 0.032
=1.0 and timet=100. As the stresses, rise abover,, the
banding instability becomes transient and the system reverts 05 | 0.016
at long times to its mean-field STZ behavior for the visco- 0.008
plastic regime.
Now consider the second kind of experiment mentioned
in the Introduction, i.e., the conventional situation in which a 0 0 5 10 15 20

stress-strain curve is measured at constant strain rate. As-
sume that the spatially averaged total strain rate ggay, is

held fixed. Assume further that the total strain is a simple F|G. 5. Stress-strain curves for a sequence of simulated constant
sum of elastic and plastic parts, and that the elastic st&in strain-rate experiments. All material parameters are same as in Fig.
is given by Hooke’s law, i.eg=2 u vy ®'. Because the spa- 3. The strain rateg, are as shown.

efe,
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pect that the problem lies with one or more of the major 0.02
simplifying assumptions that are built into it.
The behaviors shown in Figs. 3 and 5 represent only a

very small part of the space spanned by the parameters
A, etc. For example, the stability spectrum shown in Fig. 2
implies that creep tests performed on rapidly quenched soft da 0.01}
materials, with large\;, , would exhibit shear-banding insta-
bilities at arbitrarily small applied stresses, and that these
instabilities would actually weaken and disappear at larger
stresses. Similarly, such materidls they exisy would ex-
hibit strain softening at constant-strain rate only at low rates 0
and with small peak stresses. It will be interesting to learn
whether such behaviors, or others that may be less apparent @) 5
results of this nonlinear model, actually occur in nature. 0.2
The last question that | shall address with these tech-
nigues is whether there may be some connection between the
microstructural shear banding discussed so far and the for-
mation of macroscopic shear bands in materials that do not
soften in this manner. Consider a case in which the system is a o1
strongly stable against formation of microstructural shear
bands, but in which there is a weak spot characterized by a

0.015 |

0.005 |

0.15 ¢

locally high density of STZ’s. Further, let the orientations of 0.05 |

the zones in this weak spot be such that they will transform

easily in response to an applied stress, and thus will induce 0 , /\ J\ ‘

additional stresses in their neighborhoods. o 1 2 3 4 5 6 7
The behavior of such a system is shown in Fig. 6. Here, as (b) g

before,s;, =1, andv=0.4, buta= 10. Initially, A(g,q):o FIG. 6. Two graphs of the strain ratgas a function of position
andA(£,0)=0.5 everywhere except in a narrow regi®nof  + showing the emergence of shear bands near a weak spot in an
420 discretization intervalsat {=3.5 whereA(§,0)=—1,  otherwise stable system. The constitutive parametersaar@o,
A(£,0)=2. There is no other heterogeneity and no noise in;, —1, and»=0.4. The uniform applied stressdg=0.5. Initially,
this initial state. A constant, uniform Stres%=0.5 is ap- A;,=0.5, A=0 everywhere except in a very narrow region near
plied abruptly at=0. In the absence of the weak spot, this ¢=3.5 where, at=0, A;,=2.0, A=—1. In(a), wheret=200, the
system would relax stably to a uniform, jammed state withsystem as a whole is still deforming in response to the applied
q=0 after about 2000 time unit§The relaxation is slower stress, and the central shear bands are just beginning to appear. In
than in previous examples because of the large value of (b), wheret=5000, all of the deformation rate .is concentrated inthg
and therefore small value @ oy).] Figure 6 shows the re- ba_nds, and the whole system has reached its steady-state configu-
sulting dimensionless strain ratg¢,t) at timest=200 and ration.
t=5000. At the earlier time, a central shear band and two
weaker side bands are emerging, and the whole system is
also deforming as indicated by the nonzero valueq wofll The STZ theory, including its extension discussed here,
away from the bands. At the later time, all of the shear isexhibits a wide range of behaviors that look qualitatively like
taking place in the bands, and the peak strain rate in thphenomena that occur in real materials. In contrast to other
central band is now an order of magnitude larger than it wasnore phenomenological theories of plasticity, it has the ad-
earlier. This configuration seems to be completely stable; Vantage of being based on a microscopic picture of the inter-
have continued the calculation outtte- 10 000 and find no nal states of noncrystalline solids; thus, it ultimately should
further changes. be possible to compute the STZ constitutive parameters from
This numerical experiment is as close as | can come tdirst principles. More important, in my opinion, is the fact
simulating a shear band in this one-dimensional truncation othat the STZ theory consists of a small set of equations of
the plasticity problem. The most that can be said so far is thamotion for internal state variables, and therefore is intrinsi-
the calculation indicates the possibility of isolated band for-cally simpler and more general than conventional theories
mation even in hard materials where no extended, microf8,16]. The structure of the STZ theory, by itself and without
structural shear-band patterns can occur. It also suggests thaference to specific mechanisms, has experimental implica-
a macroscopic shear band might consist of a cluster of mitions. For example, the diverging relaxation time near the
crostructural bands. Macroscopic shear bands, however, awdtimate yield stress in nonsoftening materials is a very gen-
intrinsically two or three-dimensional phenomena; thereforegral prediction that ought to be checked experimentally. An-
speculation about how they might appear in a more generaither possibility, as | have argued in a recent publication, is
STZ theory is best left to Sec. VI. that the dynamical degrees of freedom in the STZ model

VI. CONCLUDING REMARKS
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may resolve the puzzle of how breaking stresses can b#an macroscopic length scales? This result seems especially
transmitted through plastic zones at the tips of brittle crackpuzzling in light of the fact that the average spacing between
[17]. the zonesn,.1'?, must be much larger thamif the theory is
Microstructural shear banding, while not so general a preto be internally self-consistent.
diction as the diverging relaxation time near the yield stress, Part of the answer is that, in deriving E.7) from Eq.
seems to be an inevitable consequence of the specific ST@.13), | have assumed that the pattern is purely one dimen-
mechanism; the banding instability comes directly from thesional and, accordingly, have averaged the rate of STZ trans-
quadrupolar symmetry of the STZ transformation. However formations from— to + in the direction parallel to the
the theoretical analysis presented here is still far from definishear bands. This infinite average causes the integral kernel
tive. Its most serious shortcoming is that it is only one di-g(¢) to vanish for| £|> 1, which would not happen for bands
mensional in the places where it tries to relate to experimenef finite extent or in a theory that paid closer attention to
tal observations, i.e., in Sec. V. A more likely picture is thefluctuations in the spatial distribution of STZ’s. Perhaps a
one shown in Fig. 6 of Bulatov and Argdi2], where the  better theory will produce a screening length for the interac-
two-dimensional pattern of shear bands consists of finitetions between zones. And perhaps, in a two-dimensional ver-
sized patches oriented along the two equivalent directions afion of the theory, interactions between patches of different
maximum shear stress. The way in which these patches irrientations will produce a characteristic patch size.
teract and interfere with each other may be a crucial aspect A related question is the one raised at the end of Sec. V:
of the pattern-forming mechanism, in which case a fully twoHow might these microstructural shear bands be related to
or three-dimensional analysis will be necessary in order tehe macroscopic bands seen in real materials? One possible
understand the shear-banding instability in the STZ theory.picture is that, in a two or three-dimensional situation, the
There are several other serious shortcomings of th@and would consist of a cluster of microscopic bands grow-
present analysis, most—or all—of which | believe can being out from a stress concentration near some defect or sur-
remedied by plausible extensions of the existing theory. Ongace irregularity, and this cluster would propagate away from
such shortcoming is that the STZ theory assumes that there ige initiation point along the direction of maximum local
only a single kind of zone rather than a distribution of themshear stress(See, for example, observations by Kramer
with a range of transformation rates. Hasan and Bdyde [18].) Such a growing shear band might have the geometry
include such a distribution in their constitutive model, andand associated stress field of an advancing mode-Il crack.
they use its width as one of their adjustable parameters faThe concentrated stresses near the tip would soften and de-
fitting experimental data. | suspect that the implicit assumpform the neighboring material by creating and reorienting
tion of an infinitely sharp distribution in the present analysisSTZ’s, much as in the one-dimensional caricature shown in
may be the principal reason why the stress drops in Fig. 5 argig. 6. Note that this picture is based on the local, nonlinear
so abrupt and deep. It would not be difficult to rewrite thedynamics of STZ’s in a region of large stress, and therefore
present theory as an average over different varieties of STZ'seems to be quite different from the bifurcation theories pro-
and thus smooth out such unrealistically sharp featureosed, for example, by Rice and othgik9]
However, it would be much more satisfactory to derive such
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