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Microstructural shear localization in plastic deformation of amorphous solids
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The shear-transformation-zone~STZ! theory of plastic deformation predicts that sufficiently soft, noncry
talline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A li
nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening i
constant-stress and constant-strain-rate experiments. The analysis presented here pertains only
dimensional banding patterns in two-dimensional systems, and only to very low temperatures. It us
rudimentary form of the STZ theory in which there is only a single kind of zone rather than a distributio
them with a range of transformation rates. Nevertheless, the results are in qualitative agreement with e
features of the available experimental data. The nonlinear theory also implies that harder materials, wh
not undergo a microstructural instability, may form isolated shear bands in weak regions or, perhaps, at
of concentrated stress.
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I. INTRODUCTION

In a recent publication@1#, Falk and I proposed a ‘‘shear
transformation-zone’’~STZ! theory of plastic deformation in
amorphous solids. This theory was based on direct obse
tions of microscale rearrangements in molecular dynam
simulations. The central feature of the theory was the rec
nition that the STZ’s—localized regions where irreversib
molecular rearrangements occur—are two-state syste
they can switch back and forth between only two orien
tions. Thus, the density of zones and the average of t
orientations are appropriate order parameters for charact
ing the internal states of such systems. The equations of
tion for these order parameters, including terms that desc
annihilation and creation of STZ’s during deformation, pr
duce a relatively simple theory of plasticity that exhib
strain hardening, a dynamic transition between viscoelas
ity and viscoplasticity at a yield stress, and hysteretic effe

As presented in@1#, the STZ theory is strictly a mean-fiel
theory; it allows no spatial correlations in the stress or str
fields or in the new order parameter. This assumption
spatial homogeneity, however, is inconsistent with the or
nal picture when examined in closer detail. A localized sh
transformation produces a quadrupolar elastic displacem
field in its neighborhood, and a corresponding change in
local stress pattern. It is easy to see that this change in s
may induce shear transformations in neighboring zo
along the directions of maximum shear.~See Sec. III and IV
for details.! If each localized shear transformation induc
others along certain preferred directions, then the system
whole may be unstable against formation of a pattern
shear bands. This argument is the basis of numerical si
lations described in an important series of papers by Bula
and Argon@2–4#. The latter authors used a model of loca
ized shear transformations that is more phenomenolog
than the STZ theory and that does not contain some o
central features, for example, the transition between
coelasticity and viscoplasticity or the hysteretic effects. O
purpose of the present investigation has been to explore
Bulatov-Argon picture of microstructural shear banding
2001/64~1!/011504~12!/$20.00 64 0115
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the context of the STZ theory.
In its original mean-field version, the STZ theory predic

the time dependence of the plastic shear strain«pl(t) in ex-
periments~creep tests! where a uniform~deviatoric! stresss
is applied quickly and then held at a constant value. F
stresses less than an ultimate yield stresssy , the strain ap-
proaches a value« f inal

pl (s)5«pl(t→`) and remains constan
there; that is, the two-state systems become ‘‘jammed.’’ T
quantity« f inal

pl (s) diverges ass approachessy from below, as
does the characteristic time for approach to the final state
graph of s as a function of« f inal

pl therefore looks like an
ordinary stress-strain curve with plastic yielding, althou
the STZ interpretation of it as the infinite-time limit is no
strictly conventional. For applied stresses abovesy , the sys-

tem comes to steady state at a nonzero strain rate«̇ f inal
pl (s),

which increases with increasings.sy . In this case, the char
acteristic time for approach to steady state diverges ass ap-
proachessy from above.

I have~so far! found only two examples of constant-stre
experiments of this kind reported in the literature, an ea
one by Ender in 1968@5# and another more recent investig
tion by Hasan and Boyce in 1995@6#, both using the polymer
PMMA. The work of Hasan and Boyce~HB! is rich in detail
and is supplemented by a theoretical analysis of their d
At small applied shear stresses~up to about 80% of what I
interpret to be an ultimate yield stress!, the HB results seem
to be consistent with the mean-field STZ prediction, i.e.,
strain rate decreases monotonically to zero. At hig
stresses, however, the curves of strain versus time have
flection points where the strain rate goes through a minim
and then increases, indicating the onset of some new mod
viscoplastic deformation. Significantly, the transition fro
viscoelastic to viscoplastic response occurs within a v
narrow range of applied stresses; that is, the strain rat
highly sensitive to the stress within this range. I propose t
this new mode of deformation may emerge from a mic
structural shear-banding instability.

The most common measurements of plastic deforma
are performed under conditions of controlled strain, spec
©2001 The American Physical Society04-1
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cally, at constant-strain rates. For soft materials such as p
meric glasses or soils, stress-strain curves generated in
way often exhibit strain softening. That is, the stress initia
rises with increasing strain but then goes through a m
mum and decreases, so that the stress ultimately require
sustain the fixed strain rate remains lower than the p
stress. Hasan and Boyce@6# show clear examples of this kin
of behavior; similar data for soils can be found in the bo
by Ishihara@7#. The converse of the strong stress sensitiv
seen in the constant-stress experiments is the fact tha
peak stresses in the constant-strain-rate experiments are
weakly dependent on the strain rate. I suggest that this
sion of strain softening also can be understood as the re
of an instability that sets in near the peak stress and prod
a pattern of microstructural shear bands that account for
deformation rate in the subsequent steady state.

The theoretical analysis of Hasan and Boyce@6# provides
important background for the present investigation. Like
STZ theory, the HB theory is based on a picture of localiz
shear-transformation sites whose populations and state
deformation are the internal state variables that characte
the system. Unlike STZ, however, HB do not try to mod
the molecular rearrangements taking place at their site
the interactions between these sites; thus they do not atte
to discover a connection between strain softening and s
localization. Nevertheless, there are deep relations betw
these theories. Both are attempts to identify the physic
relevant internal variables whose equations of motion m
ultimately be the basis of any satisfactory, history-depend
theory of plasticity—as opposed to, say, purely phenome
logical theories based on yield surfaces@8# or Masing rules
@9#. ~Unfortunately, HB use the strain itself as a state va
able, which cannot be correct from a fundamental point
view.! Moreover, both theories identify cumulative intern
changes during plastic deformation as the basis for dyna
yielding at high stress.~See also, for example, work b
Barenblatt.@10#!

The scheme of this paper is as follows. Section II conta
a brief outline of the basic ideas of the STZ theory and ser
to define concepts and notation for the rest of the analysis
Sec. III, I derive an approximate, quasilinear, but fully te
sorial generalization of the STZ equations that allows me
consider spatially inhomogeneous stress changes. Sectio
contains a linear stability analysis of the spatially unifo
steady-state solutions of the quasilinear theory. The expe
instabilities emerge, but with some surprises. The quasilin
analysis provides the basis for a nonlinear integrodifferen
equation that describes, in an effectively one-dimensio
situation, how shear patterns may emerge in respons
shear stresses. The solutions of the latter equation exhibi
strain-softening behaviors described in the preceding p
graphs. They also provide a mechanism for the formation
isolated shear bands in materials that do not exhibit st
softening. The nonlinear analysis, including numerical
sults, is described in Sec. V.

The results presented here are, at best, a rough caric
of plastic deformation in shear-banding or strain-soften
materials. Some features seem to be quite convincing,
others remain problematic. Answers to several central qu
01150
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tions, especially the importance of the one-dimensional
proximation made in Sec. V, will require numerics and lab
ratory experiments that are beyond the scope of the pre
investigation.

II. ELEMENTS OF THE STZ THEORY

As in @1#, the discussion presented here pertains only
two-dimensional noncrystalline systems at effectively ze
temperatures, i.e., at temperatures far below the glass tra
tion. Also, following @1#, it is useful to start with the specia
case of a single preferred orientation for the zones and
applied stress, and to denote the number density of zo
oriented in the ‘‘1 ’’/‘‘ 2 ’’ directions by the symboln6 .
Unlike @1#, however, the convention here is one in which t
externally applied deviatoric stress is diagonal in thexy co-
ordinates, specificallysxx52syy5s0, and sxy50. Choose
the ‘‘1 ’’ zones to be oriented~elongated! along they axis,
and the ‘‘2 ’’ zones along thex axis. With this convention,
we can—temporarily—suppress tensor notation.

As in @1# Eq. ~3.10!, the plastic strain rate is

«̇pl5b2~D«!W, ~2.1!

whereb2 ~previously denotedVz) is the typical area of an
STZ, (D«) is the increment of local shear strain that occu
when one of these zones undergoes a transition~a number of
order unity!, and

W5R1n12R2n2 . ~2.2!

Here,R1 andR2 are the rates for ‘‘1 ’’ → ‘‘ 2 ’’ and ‘‘ 2 ’’
→ ‘‘ 1 ’’ transitions, respectively. These transition rates,
very low temperatures, are entropy activated as oppose
thermally activated:

R6~s0!5R0 expF2
DV* ~6s0!

v f
G , ~2.3!

whereDV* (6s0) is the excess free volume~area! needed to
allow a ‘‘6 ’’ → ‘‘ 7 ’’ transition to occur, andv f is the
average free volume in the system. In@1#, DV* (6s0) was
chosen to have the form

DV* ~s0!5V0* exp~2s0 /m̄ !, ~2.4!

whereV0* is of order the average volume per molecule andm̄
is generally much smaller than the shear modulus.R0 is an
attempt frequency that, in@1#, was found to be proportiona
to the square root of the total strain rate. Here, I shall assu
that this factor is simply a constant.

If there is no spatial dependence of any of the variab
then the equation of motion forn6 is

ṅ65R7n72R6n61~ «̇pls0!@Acr2Aannn6#. ~2.5!

This equation includes terms that describe creation and
nihilation of STZ’s at rates proportional to the rate at whi
plastic work is being done on the system,«̇pls0, with coef-
ficientsAcr andAann, respectively.
4-2
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As previously, definenD5n2n1 , ntot5n21n1 . Also,

R6~s0!5R0@C~s0!6S~s0!#, ~2.6!

where

C~s0!5expF2
V0*

v f
coshS s0

m̄
D GcoshFV0*

v f
sinhS s0

m̄
D G ,

S~s0!5expF2
V0*

v f
coshS s0

m̄
D GsinhFV0*

v f
sinhS s0

m̄
D G .

~2.7!

Then

ṅD52R0S~s0!ntot22R0C~s0!nD2~ «̇pls0!AannnD ;
~2.8!

and

ṅtot5~ «̇pls0!@2 Acr2Aannntot#. ~2.9!

Equation~2.9! implies that the ratio 2Acr /Aann[n` is the
natural equilibrium value forntot , the total density of STZ’s.
In principle,n` could be a stress-dependent quantity. Am
phous materials~even the Lennard-Jones solid in the m
lecular dynamics simulations described in@1#! generally ex-
hibit a second order dilation in response to a shear str
thus the equilibrium density of STZ’s might increase as
function of s0

2. For simplicity, however, I shall not conside
that possibility here.

Next, transform to dimensionless variables:nD5n`D,
ntot5n`L, and write

«̇pl5
«0

t~s0!
w, ~2.10!

where

w5T~s0!L2D; ~2.11!

«05
1

2
b2~D«!n` ;

1

t~s0!
52 R0C~s0!; ~2.12!

and

T~s0!5tanhFV0*

v f
sinhS s0

m̄
D G . ~2.13!

The equations of motion forD andL become

Ḋ5
w

t~s0!
~12g s0D! ~2.14!

and

L̇5
g

t~s0!
w s0~12L!. ~2.15!
01150
-

s;
a

Here,g5(1/2)Aannb
2(D«)n` , which I shall assume to be

stress-independent quantity.
As pointed out in@1# ~see also@11–13#!, Eqs.~2.14! and

~2.15! have two kinds of solutions, one—the ‘‘jammed’’ o
‘‘viscoelastic’’ solution—in which the plastic rate of defor
mation «̇pl vanishes in steady state, and another—the ‘‘v
coplastic’’ solution—in which it does not. In the first cas
there is a one-parameter family of solutions withD5D0
5T(s0)L0 where L5L0 can have a continuous range
values determined dynamically by the density of STZ’s
the initial state of the system. In the second, viscopla
case, we can have onlyD5D051/(g s0) and L5L051.
The jammed states are dynamically stable attractors for
ues ofs0 less than an ultimate yield stresssy , determined by

g syT~sy!51. ~2.16!

Conversely, the viscoplastic state is stable fors0.sy . To see
these stability properties, writeD5D01D1(t), L5L0
1L1(t), and compute the amplification ratev0(s0) for
which Ḋ15v0D1 , L̇15v0L1. The result is that, fors0
,sy , the two eigenvalues arev050 ~becauseL0 is unde-
termined!, andv05V0, where

V0~s0!52C~s0!@g s0T~s0!21#. ~2.17!

For s0.sy , the D1 and L1 modes are decoupled, and bo
have the eigenvaluev052V0. BecauseV0 is an increasing
function ofs0 that vanishes atsy , the stable attractor crosse
from the viscoelastic to the viscoplastic branch of stea
states ats05sy .

III. QUASILINEAR THEORY OF INHOMOGENEOUS
STRESS PATTERNS

So far, this analysis has pertained only to systems
which the shear stress has magnitudes0 everywhere and has
only a fixed orientation. To incorporate inhomogeneo
stress tensorssi j with varying orientations into this analysis
we need—at least temporarily—a fully tensorial version
the theory. No such version of the complete STZ theory
ists at present.~See Appendix A of Falk’s dissertation@14#
for a first attempt at developing such a version.! Therefore, I
shall resort to a quasilinear approximation@11,13# in order to
derive equations of motion for the inhomogeneous str
variations.

Start by noting that the~deviatoric! stress and plastic
strain must in general be traceless, symmetric tensors,si j ,
and« i j

pl, respectively. It follows from the form of Eqs.~2.10!,
~2.14!, and ~2.15! that D, w, andT also must generalize to
traceless, symmetric tensors, and thatL must be a scalar
One way to obtain such a structure is to write

Ti j 'l si j , l'V0* /~v fm̄ !; ~3.1!

that is, linearize the right-hand side of Eq.~2.13! in s0 and
then lets0 becomesi j . To be consistent, we also must a
proximate the time constantt(s0) by its limit at smalls0,
which I denote simply byt0:
4-3
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1

t0
'2 R0e2V0* /v f . ~3.2!

These estimates forl andt0, however, should not be take
literally; they represent only one of possibly many ways
which we might start from atomistic considerations to der
a theory with the general phenomenological structure sho
below.

With the approximations~3.1! and ~3.2!, we now have:

«̇ i j
pl5

«0

t0
wi j , wi j 5l si j L2D i j . ~3.3!

Also, ~using summation convention!,

Ḋ i j 5
1

t0
Fwi j 2

1

2
g~wklskl!D i j G ~3.4!

and

L̇5
1

2 t0
~wklskl!g~12L!. ~3.5!

The dissipation rate, denoted by«̇pls0 in Sec. II, generalizes
here to (1/2)«̇kl

plskl . Note that, if we guess thatL→1 quickly
and stably and therefore setL51 in Eq.~3.3!, we obtain the
quasilinear STZ equations that were used in@11# and@12#. If
we did this here, however, we would miss some of the m
important features of the shear-banding mechanism.

The new element of the present theory is that the st
tensorsi j is to become a dynamical quantity varying wi
both position and time (x, y, andt). Before writing equations
of motion for si j , I must specify the physical picture that
have in mind. The molecular dynamics simulations repor
in @1# imply that the STZ’s are sparsely distributed sites
which small clusters of atoms undergo irreversible rearran
ments in response to applied stresses. To visualize an S
think of a void in an elastic material, and place a small gro
of atoms inside this void in such a way that their average f
volume is somewhat larger than that for most other atom
the system. The void has some degree of structural stab
it can deform elastically but, because of the configuration
atoms on its surface, it resists collapse. Rearrangemen
the atoms that are caged within the void couple to its sh
and, therefore, to the stress field in the elastic medium
which the void is embedded.~The stress field outside th
void is similar to that in the neighborhood of an Eshel
inclusion. @15#! This stress field—outside the STZ’s—
provides the mechanism by which the STZ’s are coupled
each other.

To distinguish it from the uniform applied stresss0 ~as
defined at the beginning of Sec. II!, denote this fluctuating
part of the stress field by the symbols̃i j (x,y,t). For simplic-
ity, first consider a ‘‘2 ’’ → ‘‘ 1 ’’ STZ transition located at
the origin of the coordinate system and aligned along
original xy axes; and compute the stresses and strains i
not-too-close neighborhood by the potential method. Tha
defineF(x,y) such that
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¹2F50; ux5]xF; uy5]yF; ~3.6!

and choose

F~x,y!;
y22x2

~x21y2!2 5
cos 2u

r 2 ~3.7!

so thatux;x23 along thex axis anduy;2y23 along they
axis. Then the deviatoric stress and strain fields have
form

s̃xx2 s̃yy;]x
2F2]y

2F;2
x426x2y21y4

~x21y2!4 52
cos 4u

r 4 ,

~3.8!

where r and u are the conventional polar coordinates. Th
function has negative lobes along thex andy axes and posi-
tive lobes along the linesx56y, so that the shear in the
direction of the initial deformation is largest along the diag
nals.

Now suppose that the STZ transformation, which cau
the stress pattern~3.8!, is rotated by an angleq relative to
the xy coordinate system. Then

F~x,y!5
1

r 4 @~y22x2!cos 2q22xy sin 2q#

52
r i r j

r 4 Di j ~q!, ~3.9!

whereD is proportional to the director matrix:

D~q!5const3S cos 2q sin 2q

sin 2q 2cos 2q D . ~3.10!

If, according to Eq.~3.6!, F is the potential for displace
ments, then, for any positionr far enough away from the
origin that it is outside the transforming zone,

ṡ̃i j ~r !52m «̇ i j
el~r !522mb4] i] j

r kr l

r 4 «̇kl
b ~0!. ~3.11!

Here, «̇ i j
el(r ) is the elastic strain rate induced atr , m is the

elastic shear modulus, andb is the characteristic size of a
STZ. The quantity«̇kl

b (0) is the strain rate induced by th
shear transformation at distancesr of orderb, which, in turn,
is proportional to the rateṅD(0) at which the STZ population
is changing at the pointr50. More generally, the source o

the fluctuating stress fieldṡ̃i j (r ) has a density distribution a
a point, say,r 8 given by

ntot«̇kl
b ~r 8!5~D«!ṅD~r 8!5~D«!n`Ḋkl~r 8!. ~3.12!

Integrating over the population of STZ’s with this sour
density, we find an equation of motion for the deviato
stress field:
4-4
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ṡ̃i j ~r !522m b4~D«!n`E d2r 8

3F ]

]r i

]

]r j

~r k2r k8!~r l2r l8!

ur2r 8u4
G Ḋkl~r 8!H~ ur2r 8u2b!.

~3.13!

Here,H is the Heaviside function that cuts off the integrati
inside the core of the STZ.~It may be more realistic, bu
probably not essential, to use a smoother cutoff.! Because
this stress field comes directly from Eqs.~3.6! and ~3.7!, it
automatically satisfies the force balance and compatib
conditions.

Equation~3.13! is best expressed in terms of the Four
transform ofs̃i j (x,y), say ŝi j (k). Then,

1

2m~D«!b2n`

ṡ̂xx~k!5Ĝ1~k!D̂̇xx~k!1Ĝ2~k!D̂̇xy~k!;

1

2m~D«!b2n`

ṡ̂xy~k!5Ĝ2~k!D̂̇xx~k!2Ĝ1~k!D̂̇xy~k!.

~3.14!

Note that these are linear relations between the time der
tives of the fluctuating part of the stress field and the or
parameterD.

The kernelsĜ contain much of the dynamical informatio
that we need. Write the wave vectork in the form kx
5k cosc, ky5k sinc. Then

Ĝ1~k,c!52cos~4c!ĝ~bk!; Ĝ2~k,c!52sin~4c!ĝ~bk!;
~3.15!

and

ĝ~k!56 k2E
k

`dr

r3E
0

2p

du e2 ir cosucos 4u

512p k2E
k

`dr

r3 J4~r!5
12p

k
J3~k!, ~3.16!

where k5bk and theJ’s are Bessel functions. Therefor
ĝ(k) approachespk2/4 ask→0 and is proportional tok23/2

as k→`. It rises through a maximum of about 4.176 atk
5kc>3.611 and then oscillates as it decreases. In the
lowing, I denote the maximum value ofĝ(k) by nc

21 , i.e.,
nc>0.2395.

IV. STABILITY OF THE UNIFORM STEADY STATES IN
THE QUASILINEAR THEORY

The next step is to use the results of the preceding sec
to examine the linear stability of spatially uniform stead
state solutions of our equations of motion. As we shall se
Sec. V, the linear stability analysis of steady states mis
crucially important transient phenomena, but it does give
some insight into the behavior of this system.
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It is convenient to use a notation in which

si j 5S s0 0

0 2s0
D 1S ŝ1 ŝ2

ŝ2 2 ŝ1
D eik•r1vt, ~4.1!

with analogous notation for components ofD, and

L5L01L̂1eik•r1vt. ~4.2!

The second term on the right-hand side of Eq.~4.1! is the
fluctuating stress tensors̃i j . Like all other first-order terms in
this linear analysis, its time dependence is exp(vt).

At zeroth order, according to Eqs.~3.3!, ~3.4!, and~3.5!,
we have

Ḋ05
1

t0
~ls0L02D0!~12g s0D0!, ~4.3!

and

L̇05
g s0

t0
~ls0L02D0!~12L0!. ~4.4!

In this quasilinear approximation, the ultimate yield stre
sy , determined by Eq.~2.16!, is sy51/Ag l.

Consider first the jammed situation for whichs0,sy , and
examine the linear stability of the stationary state withD0
5l s0L0 . L0 remains a free parameter to be determined
initial conditions. ~We shall computeL0 explicitly in Sec.
V.!

The first-order equations are the following:

v t0D̂15~l L0ŝ11l s0L̂12D̂1!~12g s0D0!; ~4.5!

v t0D̂25l L0ŝ22D̂2 ; ~4.6!

and

v t0L̂15g s0~l L0ŝ11l s0L̂12D̂1!~12L0!. ~4.7!

From these relations, we find that

D̂15
l L0DL~s0!

v t01D~s0!
ŝ1 ; D̂25

l L0

v t011
ŝ2 ; ~4.8!

where

D~s0!512S s0

sy
D 2

; DL~s0!512L0S s0

sy
D 2

. ~4.9!

The combination of Eqs.~3.14! and ~4.8! is a pair of
linear, homogeneous equations that determines the am
cation ratev(k,c):

ŝ152cos~4c!n`ĝ~bk!S DL~s0!L0

v t01D~s0! D ŝ1

2sin~4c!n`ĝ~bk!S L0

v t011D ŝ2 ; ~4.10!
4-5
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and

ŝ252sin~4c!n`ĝ~bk!S DL~s0!L0

v t01D~s0! D ŝ1

1cos~4c!n`ĝ~bk!S L0

v t011D ŝ2 . ~4.11!

Here,

n`52m l~D«!b2 n` . ~4.12!

As we shall see,n` is the dimensionless group of paramete
that controls stability against microstructural shear bandi

To understand the nature of the stability spectrum, i
easiest to look at two special cases. The most important
ation for our purposes is the orientationc56p/4, where the
bands are aligned with the direction of maximum appl
shear stress. In this case, theŝ1 and ŝ2 modes decouple, an
we have

v~k,p/4!t05H n`ĝ~bk!L0DL~s0!2D~s0! ~ ŝ1 mode!

2n`ĝ~bk!L021 ~ ŝ2 mode!.
~4.13!

As might be expected, an instability~positivev) can occur
in the ŝ1 mode where the shear deformation is parallel to
bands; theŝ2 mode, where the shear is normal to the ban
always decays. Suppose, for the moment, thatL0→1 during
the initial transient—a possible consequence of the dynam
described by Eq.~4.4!. Then, for theŝ1 mode in Eq.~4.13!,

v t0→S 12
s0

2

sy
2D @n`ĝ~bk!21#. ~4.14!

There is an instability for all values ofs0,sy , but only for
n`.nc>0.2395. When the latter condition is satisfied, t
instability occurs in some range of values ofbk in the neigh-
borhood ofkc>3.611.@The numerical constantsnc and kc
are defined following Eq.~3.16!.# Note that the first factor on
the right-hand side of Eq.~4.14! vanishes ass0→sy , imply-
ing that the instability weakens at large stresses and di
pears at the yield stress.

Unexpectedly~for me!, the instability is stronger in the
orientationc50, where theŝ1 andŝ2 modes again decouple
but the bands are at forty-five degrees from the direction
maximum applied shear stress, i.e., in the direction in wh
the applied shear stress vanishes. We have

v~k,0!t05H 2n`ĝ~bk!L0DL~s0!2D~s0! ~ ŝ1 mode!

n`ĝ~bk!L021 ~ ŝ2 mode!.
~4.15!

In this case, only theŝ2 mode can be unstable. The she
deformation is again parallel to the bands, but there is
weakening factor analogous to that in Eq.~4.14! for this
mode, and therefore it will grow more rapidly. Apparently,
c5p/4, a substantial fraction of the STZ’s are alrea
01150
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aligned with the applied stress by the time that the sys
has reached its uniform steady state, and thus fewer zo
are available to be transformed by the induced stressŝ1. No
such suppression occurs atc50, because there the bias
the orientation of the zones is not aligned with the orien
tion of the emerging bands.

To complete this analysis, look at the viscoplastic sta
with s0.sy . In steady state with nonzero plastic strain ra
D051/(g s0) and, without ambiguity,L051. In place of
Eqs.~4.8!, we have

D̂152
l~sy

2/s0
2!D̄~s0!

v t01D̄~s0!
ŝ1 , D̂25

l

v t01~s0 /sy!2ŝ2 ,

~4.16!

where

D̄~s0!5
s0

2

sy
2 21. ~4.17!

The analogs of Eqs.~4.10! and ~4.11! are

ŝ15cos~4c!n`ĝ~bk!S D̄~s0!~sy /s0!2

v t01D̄~s0!
D ŝ1

2sin~4c!n`ĝ~bk!S 1

v t0111D̄~s0!
D ŝ2 ;

~4.18!

and

ŝ25sin~4c!n`ĝ~bk!S D̄~s0!~sy /s0!2

v t01D̄~s0!
D ŝ1

1cos~4c!n`ĝ~bk!S 1

v t0111D̄~s0!
D ŝ2 .

~4.19!

From these we find, forc50,

v~k,0!t055
D̄~s0!@n`ĝ~bk!~sy /s0!221#

~ ŝ1 mode!

@11D̄~s0!#@n`ĝ~bk!~sy /s0!221#

~ ŝ2 mode!;
~4.20!

and, forc5p/4,

v~k,p/4!t055
2D̄~s0!@n`ĝ~bk!~sy /s0!211#

~ ŝ1 mode!

2@11D̄~s0!#@n`ĝ~bk!~sy /s0!211#

~ ŝ2 mode!;
~4.21!
4-6
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Now both modes are unstable atc50, and both are stable a
c5p/4. The instability occurs only in a finite range o
stresses 1,(s0 /sy)

2,(n` /nc); thus, it can be suppressed b
driving the system further into the viscoplastic regime
increasing the applied stresss0. Note that the geometry o
this situation is similar to that of the crazing instability
polymers. The pattern of most rapidly growing modes
aligned with the principal axes of the stress tensor rather t
along the direction of maximum shear.

V. NONLINEAR ANALYSIS

We must look at nonlinear behavior in order to und
stand the implications of these linear instabilities. To ma
progress along these lines without a great deal of new for
development, we can restrict ourselves to situations in wh
the principal axes of the stress tensor retain a single, fi
orientation everywhere throughout the system and at
times. Within this restriction, we can examine theŝ1 mode
that is unstable fors0,sy , because the applied and induc
stresses in that case remain everywhere aligned along thxy
axes, and all spatial variations occur only along the diago
orientationsc56p/4. While this mode is not the mos
strongly unstable, it is the one that couples to the app
stress and thus describes the deformations that would
measured in response to the applied loads. The restrictio
fixed stress orientation substantially limits the conclusio
that we can draw from this analysis. On the other hand, th
is no longer any reason to use the quasilinear approxima
Several physically important features of the following resu
emerge from the strong stress dependence of the full S
theory.

It is convenient to make the following changes of va
ables

sxx52syy5
1

g
s~j,t !; Dxx52Dyy5D~j,t !, ~5.1!

andj5(x6y)/bA2; i.e., j is the spatial variable in unitsb
along one or the other of the diagonal directions. For s
plicity, express time in unitsR0

21. With these transforma
tions and the additional spatial dependence, Eqs.~2.14! and
~2.15! become

Ḋ52C~s!@T ~s!L2D#~12s D! ~5.2!

and

L̇52 sC~s!@T ~s!L2D#~12L!. ~5.3!

Here,

C~s!5expF2a coshS s

s1
D GcoshFa sinhS s

s1
D G ; ~5.4!

T ~s!5tanhFa sinhS s

s1
D G ; ~5.5!
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anda5V0* /v f , s15g m̄. Symbols such asC(s) now denote
functionalsC@s(j,t)#. The yield stresssy , according to Eq.
~2.16!, is determined by

syT ~sy!51. ~5.6!

Tightly packed, hard-to-deform materials such as glas
at low temperatures or the Lennard-Jones material studie
@1# have small free volumesv f and therefore large values o
a. Conversely, softer materials such as polymers or cl
should have smaller values ofa. For largea, T(s)>1 at all
values ofs appreciably larger thans1 /a. Thus, Eq.~5.6!
implies thatsy is of order unity or, equivalently,sy is of
orderg21. In @1#, the value ofm̄ was found to be of order the
yield stress, roughly two orders of magnitude smaller th
the elastic shear modulus. This estimate, along with the
ceding estimate forg, then implies thats1>1.

To be consistent with previous notation, writes(j,t)
5s0(t)1s̃(j,t), wheres0(t) is the applied stress ands̃ is
the induced stress fluctuation. Because only theŝ1 mode
plays a role in this situation, we can write Eq.~3.13! in the
form

ṡ̃5 ñg* Ḋ, ~5.7!

where ñ52 m g(D«)b2n` . The quantity 2m g is approxi-
mately the ratio of the shear modulus to the yield stress,
is therefore very roughly of order 102. The quantity (D«) is
of order unity. As seen in the stability analysis, we ne
values ofñ greater than about 0.25 to generate instabiliti
Accordingly, b2n` must be of order 1022, which is consis-
tent with our basic assumption that the STZ’s are wid
separated from each other.

In Eq. ~5.7!, the symbolg* denotes the integral operato
obtained by Fourier transformingĝ(k):

g* Ḋ~j!5E dj8E dk

2p
ĝ~k!eik(j2j8)Ḋ~j8!. ~5.8!

Using Eq.~3.16!, we find

g* Ḋ~j!5E
21

1

dj8 g~j2j8!Ḋ~j8!, ~5.9!

where

g~j!52
1

2j3 @3 sin~2u1!13 sin~4u1!1sin~6u1!#;

u15arccosj. ~5.10!

The functiong(j) is shown in Fig. 1. It is strictly local; tha
is, it vanishes foruju.1 @an artifact of the sharp cutoff in Eq
~3.13!#. The combination of Eqs.~5.2!, ~5.3!, and ~5.7! is a
nonlinear system of equations that can be solved forD(j,t),
L(j,t), ands(j,t).

Before starting this nonlinear analysis, however, note t
the stability spectrum for the uniform state of the full ST
4-7
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J. S. LANGER PHYSICAL REVIEW E 64 011504
model is qualitatively different from the quasilinear resu
Eq. ~4.13!, in the case of hard materials with largea. For
applied stresss0,sy , and for modes of dimensionless wav
numberk oriented along one of the diagonals, the ampl
cation rate is

v~k!52C~s0!$@12s0L0T~s0!#L0T8~s0!ñĝ~k!

2@12s0T~s0!%. ~5.11!

This formula has the same structure as theŝ1 mode in Eq.
~4.13!. However, the quantityñĝ(k) is multiplied here by an
extra factorT 8(s0), which becomes exponentially small fo
s0.s1 /a. Therefore, for largea and fors0 not too small,
the system is stable except for unphysically large values oñ.
The ‘‘weakening’’ factors in Eq.~5.11! ~in square brackets!
also slow the instability at stresses nearsy . At small values
of s0, on the other hand, the factor 2C(s0) becomes small of
order exp(2a), causing any instability that might occur the
to grow very slowly. We therefore expect to find little or n
microstructural shear-banding instability in hard materia
We shall see, however, that the absence of instability d
not imply the absence of shear banding.

Turn now to the numerical solutions of Eqs.~5.2!, ~5.3!,
and ~5.7!. To solve these equations, I have used a sim
discretization of the integral kernelg(j), and have applied
periodic boundary conditions, usually choosing the length
the system to be an integral number of wavelengths 2p/kc
of the most rapidly growing mode. In this way, the proble
is reduced to a large set of coupled, ordinary, nonlinear
ferential equations. The initial conditions are alwayss̃(j,0)
50 andL(j,0)5L in . We shall see thatL in provides cru-
cial information about the way in which the system was p
pared, specifically, the degree to which it was annealed
order to allow an instability to develop, I have chosenD(j,0)
to be some small-amplitude, random white noise, co
sponding to uncorrelated inhomogeneities in the initial o
entations of the STZ’s. Specifically,

^D~j,0!D~j8,0!&5Md~j2j8!, ~5.12!

where the angular brackets denote a statistical average aM
is the noise strength.

For reasons mentioned previously, which I shall disc
further in Sec. VI, it is not sensible to try to make quanti

FIG. 1. Integral kernelg(j) defined in Eq.~5.10!.
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tive comparisons between the results of this highly simplifi
calculation and real experimental data. Nevertheless, i
useful to use the results of Hasan and Boyce~HB! @6# as a
qualitative guide. First consider their creep tests in whic
uniform applied stresss0 is turned on suddenly att50 and
held constant. I assume that HB were using a relatively s
material, and therefore choosea5s151. For these param
eters, the yield stress issy51.132. In their Fig. 4, HB show
creep-test data for a sample that underwent a sharp trans
from mean-field-STZ ‘‘jammed’’ behavior to rapid yieldin
over a narrow range of applied stresses, approximately
100 MPa. From this behavior, I guess that their ultima
yield stress—their analog ofsy—was about 100 MPa, and
that I should look at dimensionless stressess0 in some range
near unity in order to make comparisons with their result

The sample used in this particular HB experiment w
annealed so that the initial population of transformati
zones must have been quite small. It follows that we sho
look at small values ofL in ; that is, as in HB, we expect tha
the density of active sites is small at first and then increa
as the system undergoes plastic deformation. Our stab
analysis already gives us useful information about how t
may happen. In Fig. 2, I have used Eq.~5.11! to compute the
amplification rate for the most rapidly growing waveleng
v(kc) as a function of the stresss0. For lack of a better
estimate, I have usedñ50.4 here and throughout the rest
this presentation, because that value produces moderat
stabilities and, as mentioned previously, is consistent w
rough estimates of its constituent parameters. To comp
L0, I have used Eqs.~5.2! and ~5.3! to find

L05 lim
t→`

L~ t !5
L in

12~12L in!s0T ~s0!
. ~5.13!

The two functionsv(kc ,s0) shown in the figure correspond
respectively, to a highly annealed specimen withL in50.1,
and to one that is very rapidly quenched so thatL in51.0.
The quenched specimen is strongly unstable at small stre
and stabilizes only just belowsy . In contrast, the anneale

FIG. 2. Amplification ratev(kc) defined in Eq.~5.11!, as a
function of applied stresss0, for two different values ofL in ac-
cording to Eq.~5.13!. The solid curve, forL in50.1, corresponds to
an annealed system with few defects; the dashed curve, forL in

51.0, corresponds to a system that has been quenched so ra
that the initial STZ density is high.
4-8
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specimen is unstable only in a narrow range of stresses f
s0>0.97 up to the yield stress,sy51.132. At the smaller
stresses, the density of zones never grows large enoug
trigger the instability.

The corresponding results of the nonlinear calculation
an annealed system withL in50.1 are shown in Fig. 3. Here
the plastic strain«pl(t), in units «05b2(D«)n`/2, is shown
as a function of time~in unitsR0

21) for a sequence of applie
stresses corresponding roughly to the stress range show
HB Fig. 4. Specifically, the stresses shown in Fig. 3 ares0
50.4, 0.8, 0.9, 0.95, 0.975, 1.00, 1.05, 1.1, and 1.2. Ag
ñ50.4. The noise strength isM51025. As expected, for
stressess0<0.95, the strain rises to its uniform, steady-sta
value at which the system remains ‘‘jammed’’ indefinitel
There is a rapid transition in the range 0.95,s0,sy , where
the strain rate first slows but then increases to a new ste
state value, indicating the onset of microstructural sh
banding. In this range of stresses, the system enters a s
flowing regime in which the dimensionless shear rate,

q~j,t !52C~s!@T ~s!L2D#, ~5.14!

is localized in bands, as shown in Fig. 4 for the cases0
51.0 and timet5100. As the stressess0 rise abovesy , the
banding instability becomes transient and the system rev
at long times to its mean-field STZ behavior for the visc
plastic regime.

Now consider the second kind of experiment mention
in the Introduction, i.e., the conventional situation in which
stress-strain curve is measured at constant strain rate.
sume that the spatially averaged total strain rate, say«0q0, is
held fixed. Assume further that the total strain is a sim
sum of elastic and plastic parts, and that the elastic strain«el

is given by Hooke’s law, i.e.,s52 m g «el. Because the spa

FIG. 3. Plastic strain as a function of time for a sequence
simulated constant-stress experiments~creep tests!. The constitutive

parameters area51, s151, and ñ50.4. The initial ~dimension-
less! density of STZ’s isL in50.1; and the sequence of applie
stressess0 is as shown. The mesh size for numerical discretizat
is Dj50.05. Stressess0 are normalized so that the ultimate yie
stress issy51.132. Strains are in units«0, as defined in Eq.~2.12!.
Times t are in unitsR0

21, as defined in Eq.~2.3!.
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tial average of the fluctuating stresss̃ vanishes, the condition
of constantq0 becomes an equation of motion for the appli
stress:

ṡ05
1

2
ñ„q02q̄~ t !…, ~5.15!

where q̄(t) denotes the spatial average of the plastic str
rateq(j,t) defined in Eq.~5.14!.

Figure 5 shows stress-strain curves computed using E
~5.2!, ~5.3!, and~5.7!, supplemented by Eq.~5.15!. The ma-
terial parameters are the same as in Fig. 3, in particu
L in50.1. The strain rates are:q050.008, 0.016, 0.032
0.048, and 0.064. The peak stresses seen here are ro
comparable to those shown for the analogous HB exp
ments, and are in the transition range seen in the cons
stress calculations with a slight overshoot because the
plied stress continues to rise during the onset of
instability. The subsequent stress drops, however, are
stantially larger and sharper than in HB case. I have no
far found any way of correcting this discrepancy simply
adjusting parameters in the present theory, and therefore

f

n

FIG. 4. Strain rateq as a function of positionj, corresponding
to the pointt5100 on the curve fors051.0 in Fig. 3.q is in units
«0R0.

FIG. 5. Stress-strain curves for a sequence of simulated con
strain-rate experiments. All material parameters are same as in
3. The strain ratesq0 are as shown.
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J. S. LANGER PHYSICAL REVIEW E 64 011504
pect that the problem lies with one or more of the ma
simplifying assumptions that are built into it.

The behaviors shown in Figs. 3 and 5 represent onl

very small part of the space spanned by the parametersa, ñ,
L in , etc. For example, the stability spectrum shown in Fig
implies that creep tests performed on rapidly quenched
materials, with largeL in , would exhibit shear-banding insta
bilities at arbitrarily small applied stresses, and that th
instabilities would actually weaken and disappear at lar
stresses. Similarly, such materials~if they exist! would ex-
hibit strain softening at constant-strain rate only at low ra
and with small peak stresses. It will be interesting to le
whether such behaviors, or others that may be less appa
results of this nonlinear model, actually occur in nature.

The last question that I shall address with these te
niques is whether there may be some connection betwee
microstructural shear banding discussed so far and the
mation of macroscopic shear bands in materials that do
soften in this manner. Consider a case in which the syste
strongly stable against formation of microstructural sh
bands, but in which there is a weak spot characterized b
locally high density of STZ’s. Further, let the orientations
the zones in this weak spot be such that they will transfo
easily in response to an applied stress, and thus will ind
additional stresses in their neighborhoods.

The behavior of such a system is shown in Fig. 6. Here

before,s151, andñ50.4, buta510. Initially, D(j,0)50
andL(j,0)50.5 everywhere except in a narrow region~9 of
420 discretization intervals! at j53.5 whereD(j,0)521,
L(j,0)52. There is no other heterogeneity and no noise
this initial state. A constant, uniform stresss050.5 is ap-
plied abruptly att50. In the absence of the weak spot, th
system would relax stably to a uniform, jammed state w
q50 after about 2000 time units.@The relaxation is slower
than in previous examples because of the large value oa
and therefore small value ofC(s0).# Figure 6 shows the re
sulting dimensionless strain rateq(j,t) at timest5200 and
t55000. At the earlier time, a central shear band and
weaker side bands are emerging, and the whole syste
also deforming as indicated by the nonzero values ofq well
away from the bands. At the later time, all of the shear
taking place in the bands, and the peak strain rate in
central band is now an order of magnitude larger than it w
earlier. This configuration seems to be completely stabl
have continued the calculation out tot510 000 and find no
further changes.

This numerical experiment is as close as I can come
simulating a shear band in this one-dimensional truncatio
the plasticity problem. The most that can be said so far is
the calculation indicates the possibility of isolated band f
mation even in hard materials where no extended, mic
structural shear-band patterns can occur. It also suggests
a macroscopic shear band might consist of a cluster of
crostructural bands. Macroscopic shear bands, however
intrinsically two or three-dimensional phenomena; therefo
speculation about how they might appear in a more gen
STZ theory is best left to Sec. VI.
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VI. CONCLUDING REMARKS

The STZ theory, including its extension discussed he
exhibits a wide range of behaviors that look qualitatively li
phenomena that occur in real materials. In contrast to o
more phenomenological theories of plasticity, it has the
vantage of being based on a microscopic picture of the in
nal states of noncrystalline solids; thus, it ultimately shou
be possible to compute the STZ constitutive parameters f
first principles. More important, in my opinion, is the fa
that the STZ theory consists of a small set of equations
motion for internal state variables, and therefore is intrin
cally simpler and more general than conventional theo
@8,16#. The structure of the STZ theory, by itself and witho
reference to specific mechanisms, has experimental imp
tions. For example, the diverging relaxation time near
ultimate yield stress in nonsoftening materials is a very g
eral prediction that ought to be checked experimentally. A
other possibility, as I have argued in a recent publication
that the dynamical degrees of freedom in the STZ mo

FIG. 6. Two graphs of the strain rateq as a function of position
j showing the emergence of shear bands near a weak spot i
otherwise stable system. The constitutive parameters area510,

s151, andñ50.4. The uniform applied stress iss050.5. Initially,
L in50.5, D50 everywhere except in a very narrow region ne
j53.5 where, att50, L in52.0, D521. In ~a!, wheret5200, the
system as a whole is still deforming in response to the app
stress, and the central shear bands are just beginning to appe
~b!, wheret55000, all of the deformation rate is concentrated in t
bands, and the whole system has reached its steady-state co
ration.
4-10
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MICROSTRUCTURAL SHEAR LOCALIZATION IN . . . PHYSICAL REVIEW E64 011504
may resolve the puzzle of how breaking stresses can
transmitted through plastic zones at the tips of brittle cra
@17#.

Microstructural shear banding, while not so general a p
diction as the diverging relaxation time near the yield stre
seems to be an inevitable consequence of the specific
mechanism; the banding instability comes directly from
quadrupolar symmetry of the STZ transformation. Howev
the theoretical analysis presented here is still far from defi
tive. Its most serious shortcoming is that it is only one
mensional in the places where it tries to relate to experim
tal observations, i.e., in Sec. V. A more likely picture is t
one shown in Fig. 6 of Bulatov and Argon@2#, where the
two-dimensional pattern of shear bands consists of fin
sized patches oriented along the two equivalent direction
maximum shear stress. The way in which these patches
teract and interfere with each other may be a crucial as
of the pattern-forming mechanism, in which case a fully tw
or three-dimensional analysis will be necessary in orde
understand the shear-banding instability in the STZ theo

There are several other serious shortcomings of
present analysis, most—or all—of which I believe can
remedied by plausible extensions of the existing theory. O
such shortcoming is that the STZ theory assumes that the
only a single kind of zone rather than a distribution of the
with a range of transformation rates. Hasan and Boyce@6#
include such a distribution in their constitutive model, a
they use its width as one of their adjustable parameters
fitting experimental data. I suspect that the implicit assum
tion of an infinitely sharp distribution in the present analy
may be the principal reason why the stress drops in Fig. 5
so abrupt and deep. It would not be difficult to rewrite t
present theory as an average over different varieties of ST
and thus smooth out such unrealistically sharp featu
However, it would be much more satisfactory to derive su
distributions from a first-principles theory of deformations
amorphous materials rather than just to introduce them p
nomenologically.

Another shortcoming is that I have not, so far, extend
the STZ theory to finite temperatures. Including thermal
tivation in the rate factors seems a simple matter, and
temperature dependence of the phenomena studied
might provide useful tests of the basic theoretical ideas.

Finally, there are questions regarding the length scale
this theory. It is puzzling that the only length scale to eme
in this analysis isb, the size of the zones. Why should th
spacing of the microstructural shear bands scale simply w
b rather than depending also, say, on the densityntot? Why
should such an instability occur only on microscopic rath
.

.

.

01150
be
s

-
s,
TZ
e
r,
i-
-
n-

-
of
in-
ct

o
.
e

e
e
is

or
-

re

’s
s.
h

e-

d
-
e

ere

in
e

th

r

than macroscopic length scales? This result seems espe
puzzling in light of the fact that the average spacing betwe
the zones,ntot

21/2, must be much larger thanb if the theory is
to be internally self-consistent.

Part of the answer is that, in deriving Eq.~5.7! from Eq.
~3.13!, I have assumed that the pattern is purely one dim
sional and, accordingly, have averaged the rate of STZ tra
formations from2` to 1` in the direction parallel to the
shear bands. This infinite average causes the integral ke
g(j) to vanish foruju.1, which would not happen for band
of finite extent or in a theory that paid closer attention
fluctuations in the spatial distribution of STZ’s. Perhaps
better theory will produce a screening length for the inter
tions between zones. And perhaps, in a two-dimensional
sion of the theory, interactions between patches of differ
orientations will produce a characteristic patch size.

A related question is the one raised at the end of Sec
How might these microstructural shear bands be related
the macroscopic bands seen in real materials? One pos
picture is that, in a two or three-dimensional situation, t
band would consist of a cluster of microscopic bands gro
ing out from a stress concentration near some defect or
face irregularity, and this cluster would propagate away fr
the initiation point along the direction of maximum loc
shear stress.~See, for example, observations by Kram
@18#.! Such a growing shear band might have the geome
and associated stress field of an advancing mode-II cr
The concentrated stresses near the tip would soften and
form the neighboring material by creating and reorienti
STZ’s, much as in the one-dimensional caricature shown
Fig. 6. Note that this picture is based on the local, nonlin
dynamics of STZ’s in a region of large stress, and theref
seems to be quite different from the bifurcation theories p
posed, for example, by Rice and others.@19#

ACKNOWLEDGMENTS

I would like to thank Sharad Ramanathan for first su
gesting how the STZ mechanism might produce a she
banding instability, and Ali Argon and Ed Kramer for usef
discussions about the mechanical properties of amorph
materials. I thank Daniel Lavallee and Anthony Foglia f
important help with the numerical analysis, I also thank L
onid Pechenik and Daniel Rabinowitz. This research w
supported primarily by U.S. Department of Energy Gra
No. DE-FG03-99ER45762. It was also supported in part
the MRSEC Program of the NSF under Award No. DMR9
32716 and by a grant from the Keck Foundation for Interd
ciplinary Research in Seismology and Materials Science
@1# M.L. Falk and J.S. Langer, Phys. Rev. E57, 7192~1998!.
@2# V.V. Bulatov and A.S. Argon, Modell. Simul. Mater. Sci. Eng

2, 167 ~1994!.
@3# V.V. Bulatov and A.S. Argon, Modell. Simul. Mater. Sci. Eng

2, 185 ~1994!.
@4# V.V. Bulatov and A.S. Argon, Modell. Simul. Mater. Sci. Eng
2, 203 ~1994!.
@5# Dieter H. Ender, J. Appl. Phys.39, 4877~1968!.
@6# O.A. Hasan and M.C. Boyce, Polym. Eng. Sci.35, 331~1995!.
@7# K. Ishihara,Soil Behavior in Earthquake Geotechnics~Oxford

University Press, New York, 1996!.
@8# J. Lubliner,Plasticity Theory~Macmillan, New York, 1990!.
4-11



g

r-

l

J. S. LANGER PHYSICAL REVIEW E 64 011504
@9# See K. Ishihara, inGeomechanical Modelling in Engineerin
Practice, edited by R. Dungar and J.A. Studer~Balkema, Rot-
terdam, 1986!, Chap. 10.

@10# G.I. Barenblatt and V.M. Prostokishin, Eur. J. Appl. Math.4,
225 ~1993!.

@11# A.E. Lobkovsky and J.S. Langer, Phys. Rev. E58, 1568
~1998!.

@12# J.S. Langer and A.E. Lobkovsky, Phys. Rev. E60, 6978
~1999!.

@13# M.L. Falk and J.S. Langer, MRS Bull.25, 40 ~2000!.
@14# M.L. Falk, Ph.D. thesis, University of California, Santa Ba
01150
bara, 1998.
@15# J.D. Eshelby, Proc. R. Soc. London, Ser. A241, 376 ~1957!.
@16# R. Hill, The Mathematical Theory of Plasticity~Clarendon

Press, Oxford, 1960!.
@17# J.S. Langer, Phys. Rev. E62, 1351~2000!.
@18# E. Kramer, J. Polym. Sci.13, 509 ~1975!.
@19# J.W. Rudnicki and J.R. Rice, J. Mech. Phys. Solids23, 371

~1975!; J.R. Rice, inProceedings of the 14th Internationa
Congress of Theoretical and Applied Mechanics, Delft, 1976
~North-Holland, Amsterdam, 1976!, Vol. 1.
4-12


